

New Pasture Species & Practices

Nigel Phillips NSW DPI Wagga Wagga

Pastures in the cropping zone

- Traditional sub clover pastures did not perform well during drought.
- Pasture usually sown after crop so limited grazing in establishment year and seed set may be compromised in a short spring.
- Can be expensive to establish and failure during drought was high (except lucerne?)
- Relatively inflexible

"New" legumes - desirable traits

- Robust in dry years
 - higher hard seed
 - ability to set seed
- Capacity to harvest with conventional cropping machinery
- Good nitrogen fixation capacity
- Ideally, similar or better production than sub clover

Biserrula

- V.high hardseed
- Good acid/Al tolerance (Mn sensitive)
- Annual ryegrass control
- Prolific seeder (up to 1.5t/ha)
- Herbicide sensitive
- •Photosensitisation issues?

French serradella

- •New varieties moderate hardseed (55%)
- Good acid/Al tolerance (Mn sensitive)
- On-farm seed production common WA

Primary Industries

•Herbicide sensitive Department of

Balansa clover

- High hardseed
- Seed relatively cheap
- Waterlogging tolerant but good all round productivity
- Very adaptable

Rose clover

- New variety higher hardseed
- Very adaptable
- •Grows well in marginal areas

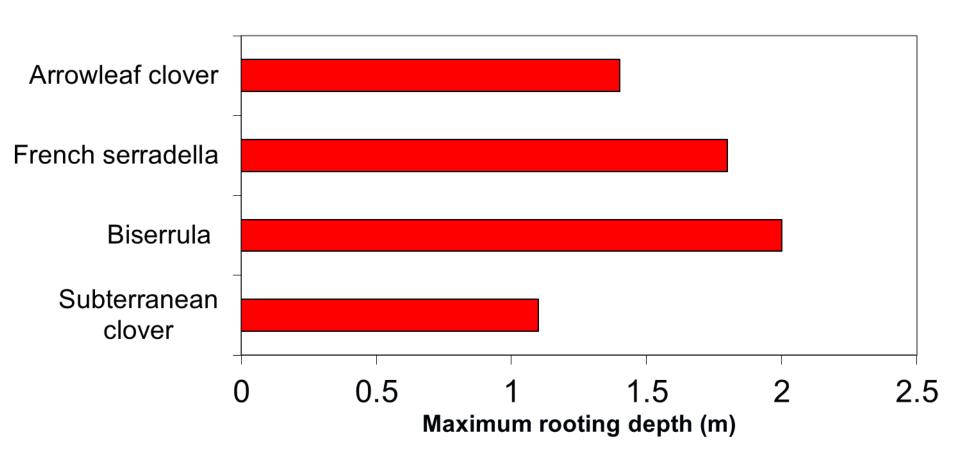
Arrowleaf clover

- Very productive and widely adapted
- High hardseed
- Productive in low pH soils

- Moderate hardseed levels
- Good productivity
- Tolerate waterloggging

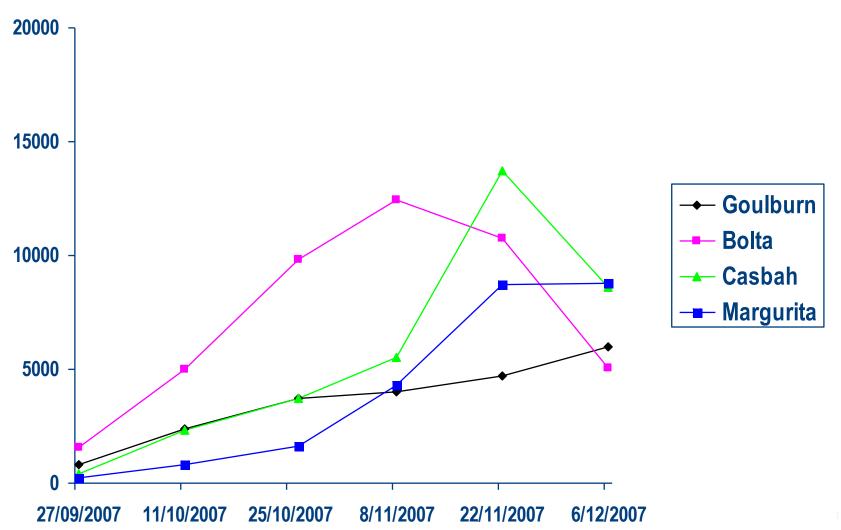
Gland clover

- RLEM resistant
- Early maturing
- Tolerates waterloggging



Bladder clover

- Very high hardseed
- Moderately productive



Maximum rooting depth (m)

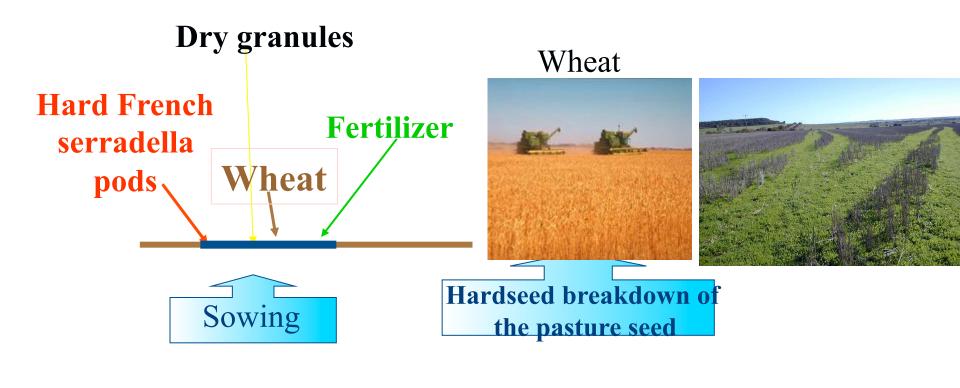
Herbage production

Hard Seed – a key trait

Legume species	Seed	Hard seed (%)								
	weight	Jan 99 Summer	F e b	Mar 99	Apr 99	May 99 Autumn	Jun 99	July 99		
	(mg)									
AGWEST® Bartolo	2.6	97	85	87	81	64	60	56		
Santiago	3.6	98	81	80	75	62	61	61		
Herald	2.3	95	87	84	84	81	74	77		
Casbah	1.2	99	94	94	82	85	81	76		
Prima	0.7	98	91	58	60	53	46	41		
Dalkeith	6.7	88	46	36	18	16	16	14		
Frontier	0.7	86	37	28	15	9	4	4		

Herbicide Tolerance

Visual ratings of herbage production.


Figures in bold show acceptable damage (24 Aug.)

1 194100 111 12	PrimaA New species under evaluation														
Species/Variety		FrontierA Balansa		Gland											
						Trigonella		Bladder		Purple		Eastern star		I I	
		clover		clover		balansae		clover		clover		clover		clover	
Herbicide (rate/ha)		24	7	24	7	24	7	24	7	24	7	24	7	24	
		Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	
Dual Gold® (PSPE) 500 mL	63	58	96	98	77	69	88	89	94	95	98	99	69	59	
Spinnaker® PSPE 70 g	90	83	99	97	94	87	67	54	79	55	90	83	65	46	
Raptor® 45 g + 0.5% Hasten® + 1%	91	79	93	88	79	69	48	38	37	34	52	33	46	42	
ammonium sulphate	91	19	93	00	79	69	40	30	31	34	52	33	40	42	
Broadstrike® 25g + 0.5% uptake®		86	100	98	88	62	92	91	40	29	20	16	85	74	
Broadstrike® 25 g + MCPA 500 mL		83	88	85	70	80	73	78	69	53	59	66	51	49	
Broadstrike® 25 g + Diuron 85 g + 0.5%		37	52	42	64	49	40	22	36	11	18	11	31	24	
Hasten®		31	52	42	04	49	40	22	30		10	' '	31	24	
Raptor® 22 g + Bromoxynil 750 mL + 0.5%		46	00		40	44	62	46	F0	40	24	20	46	20	
Hasten® + 1% ammonium sulphate		46	92	81	49	41	63	46	58	42	24	28	46	30	
Bromoxynil 1.5 L	41	43	66	58	31	42	48	53	80	64	39	28	78	75	
Igran® 850 mL		25	8	10	59	56	25	28	75	57	68	67	40	43	
Tigrex® 500 mL		73	63	64	46	54	62	63	48	34	60	49	62	67	
MCPA amine 750 mL		84	80	68	85	69	53	41	42	31	61	61	44	57	
2,4-D amine (625 g/L) 500 mL		39	17	27	48	51	32	26	34	19	39	43	55	51	
2,4-DB 1.5 L		78	61	69	76	72	83	86	73	73	83	65	79	69	
2,4-DB 700 mL + Diuron 85 g		80	52	47	44	58	80	56	73	63	88	75	65	49	
Gramoxone® (winter clean) 500 mL		73	27	17	61	70	24	30	63	44	38	23	21	19	
Verdict® 100 mL + 0.5% Uptake®		100	96	96	99	96	99	96	97	94	66	72	99	98	
LSD (p < 0.05)	23	29	20	21	34	ns	28	27	19	20	35	30	29	31	

Source: Christiaan Valentine and David Ferris, Department of Agriculture, Northam

Twin sowing

First year

Second year

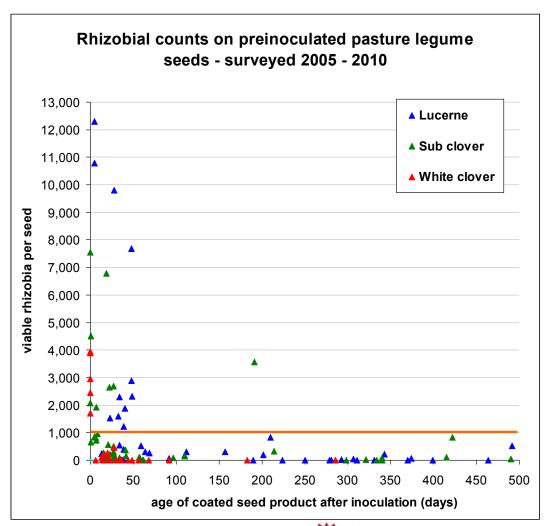
Why do I think these systems will work?

	Soil			
Year a	meloration	Sowing activity	Crop type	Comments
1989	Lime	Murex medic	Murex seed crop	
1990			murex hay crop	
1991		canola	canola	
1992			murex hay crop	
1993		wheat	wheat	
1994		canola	canola	Drought
1995	Lime	lucerne	lucerne & 5% murex hay crop	
1996			lucerne & 15% murex hay crop	
1997			lucerne & <1% murex hay crop	Drought year. Soil compaction
1998		canola	canola	
1999		wheat	wheat	
2000	Lime	murex @4kg/ha	Murex seed crop	
2001			murex hay crop	
2002			murex pasture	Drought
2003		canola	canola	Drought
2004			murex hay crop	Drought
2005			murex hay crop	Drought. Some fumitory
2006		wheat	wheat & murex	Drought. Burnt in January firestorm (hot burn) & sown to wheat - grazed out
2007			murex pasture	Drought
2008		wheat	wheat	Drought. No spring rains.

Getting inoculation right is crucial for success

Pasture performance& persistence

Nitrogen fixation


Department of Primary Industries

Pre-Inoculated Seed Surveys

Source: GRDC Inoculating Legumes: a Practical Guide (2012)

 Overall, irrespective of brand, the quality of pre-inoculated seed in terms of rhizobial number per seed is "variable".

Survey year	05	06	07	08	10
No. samples	113	50	54	55	15
No. passed	6	16	3	2	2
% pass	5	32	6	4	13

Where to from here

- Quantify Nitrogen input into cropping systems
- Bigger scale demonstrations
- Alternative sowing strategies (Summer?)
- Rhizobium work
- Photosensitisation work on Biserrula
- More herbicide work needed to gain greater adoption?

Questions?