Likely changes to livestock.

Phil Graham

Technical Specialist Livestock Systems
Agriculture NSW
YASS

Methodology of project

- Using GrassGro
- Daily weather achieved by downscaling from GCM. Program developed (Weather maker) by Andrew Moore from CSIRO.
 - 4 GCM used, based on M skill score from Climate Change in Australia- technical report 2007.

ECHAM5, HADGEM1, NCAR-CCSM, GFDL2.1. All use with A2 scenario

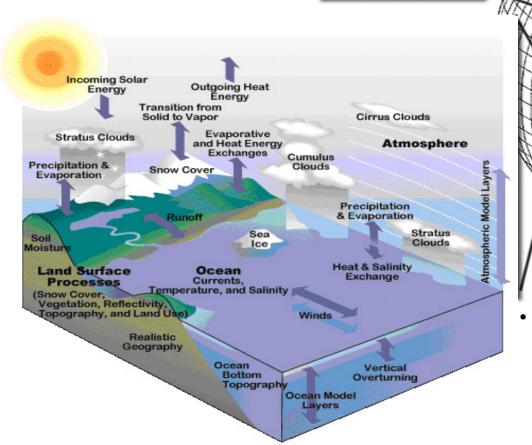
climate

GrassGro

Project logic

- Select town and app weather and soil data.
- Run livestock enterprise for 1970 to 2000 to establish base data physical, \$, environmental. We have set a limit on ground cover (70% of yrs min GC to be above 70%). This establishes the stocking rate.
- Run for 2000 to 2009 for recent reference pt.

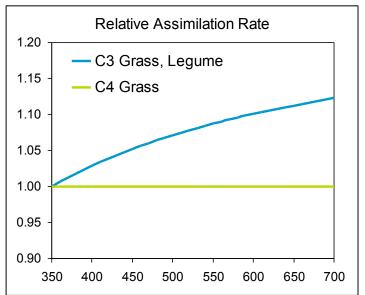
Project logic

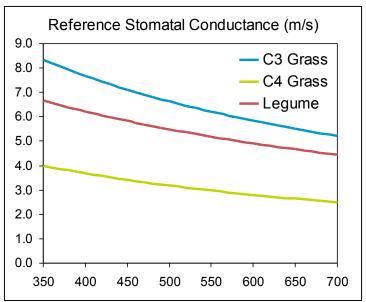

- Run exactly the same system except change the daily weather data to 30 yrs of 2030 outputs and increase CO2 to 444.
- Run this for the 4 GCM
- Use same GC rule to establish the new stocking rates for each GCM.
- Look at impact and test adaptations

What is a Global Climate Model?

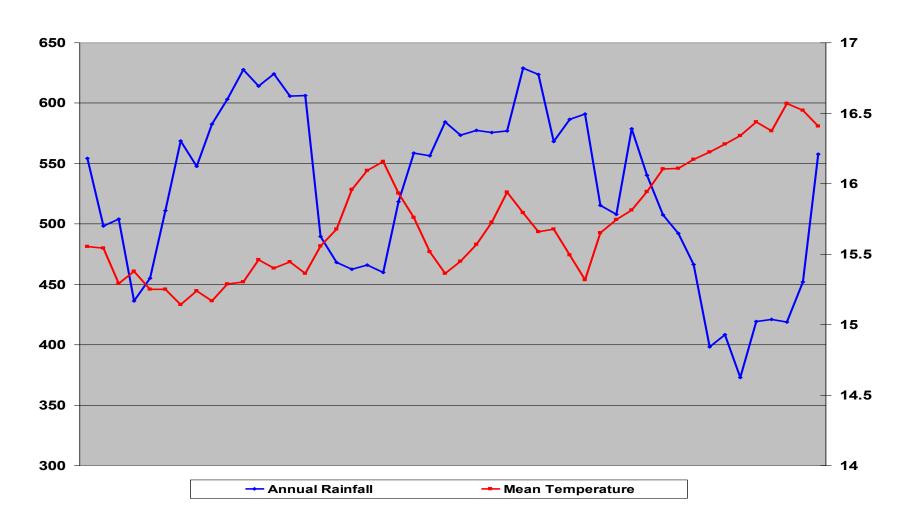
Schematic for Global Atmospheric Model

Horizontal Grid (latitude - longitude)


Vertical Grid (height or pressure)


Equations are calculated for every 10 minutes or so

Impact of increased CO2 on plant production



Leaf Water Loss

- Larger increase in net growth
- Smaller reduction in canopy transpiration rate
- 10% decrease in N content (per unit leaf area) of grasses

Mean Temperature and annual rainfall 1960 to 2011

Temora 20 um self replacing merino

Pasture type Annual grass, sub clover and lucerne

	1970–1999	2000-2009	2030 Climate Scenario 1	2030 Climate Scenario 2	2030 Climate Scenario 3	2030 Climate Scenario 4
Rainfall (mm/pa)	559	408	508	458	560	528
Temperature (°C average)	15.7	16.4	17.0	17.1	17.0	16.7
Pasture (kg DM/Ha/yr)	5752	3978	5081	4452	5345	6099
Stock Rate (DSE/Ha)	7.6	6.9	6.2	4.4	6.8	8.9
Profit (\$/ Ha)	86	29	48	-2	66	118
Profit change compared to 1970 - 1999		- 66%	- 43%	- 82%	- 23%	+37%

Note:

2030 Climate Scenario 1 - GFDL (USA 1) 2030 Climate Scenario 3 - CCSM (USA 2) 2030 Climate Scenario 4 - HAD (English) 2030 Climate Scenario 2 – ECHAM (German)

Narrandera self replacing merino

Pasture type Annual grass and sub clover

	1970–1999	2000-2009	2030 Climate Scenario 1	2030 Climate Scenario 2	2030 Climate Scenario 3	2030 Climate Scenario 4
Rainfall (mm/pa)	495	383	441	399	486	475
Temperature (°C average)	16.5	17.0	17.8	18.0	17.7	17.6
Pasture (kg DM/Ha/yr)	6782	4779	4658	4482	5184	6507
Stock Rate (DSE/Ha)	5.9	4.3	2.4	2.4	2.5	5.1
Profit (\$/ Ha)	82	31	-6	-8	1	60
Profit change compared to 1970 - 1999		- 62%	-107%	-109%	-88%	- 27%

GCMs 2006 vs 2011 for the time period 2030

	GCM	Rain mm	Mean Temp	Dse/ha	Profit/ha
Temora	1	514	17	6.6	58
	2	537	17	7.1	73
Holbrook	1	610	16.2	11.4	144
	2	652	16.3	10.6	124
Grenfell	1	553	17.2	6.6	47
	2	578	17.3	6.5	54
Cootamundra	1	615	15.7	10.1	135
	2	649	16.0	9.5	107

Pasture production within seasons

	Holbrook	Crookwell	Temora
	GCM2 vs History	GCM2 vs History	GCM2 vs History
Spring	44% vs 50%	41% vs 43%	39% vs 46%
Summer	8% vs 6%	18% vs 20%	19% vs 17%
Autumn	19% vs 19%	25% vs 26%	18% vs 16%
Winter	31% vs 23%	15% vs 10%	25% vs 21%

Temora – impact of management areas

Adaptations modelled	Profit (\$/ Ha) 1970– 1999	Profit (\$/ Ha) 2030 Average of 4 GCMs	Profit (\$/ Ha) 2030 as a % of 1970-99
1.Business as usual	86	58	67 %
1.Summer feedlot – grain \$240/t on farm		61	71 %
1.Summer feedlot – grain \$210/t on farm		71	83 %

Narrandera

Adaptations modelled	Profit (\$/ Ha) 1970–1999	Profit (\$/ Ha) 2030 Average of 4 GCMs	Profit (\$/ Ha) 2030 as a % of 1970-99
1. Business as usual	82	11.75	14% (66%)
1. Use summer feedlot – cost of grain included		20	24%
1. Ensure genetic gain from now to 2030- + 1 kg flc wt, -0.8um		29	35%
1. Combine the genetics and feedlot		47	57%
1. Business as usual – Prime lambs	139	38	27%
1. Decrease lamb turn off time and increase dressing % by 2 %		48	35%

Summary

- Pasture are going to come under pressure from increased temperatures and decrease soil water.
- This will put downward pressure on stocking rates.
- Perennials in pastures will provide more of a buffer than annuals.
- Hard seed will become more important for annuals.
- The impact on the sowing time of grazing crops will be just as important as pasture changes to the feed supply.
- Improving profit per head will become more important in the future – applies to sheep and cattle.